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Numerical methods are used to investigate the steady two-dimensional motion 
of a viscous incompressible fluid past a flat plate of finite breadth at zero incidence 
to a uniform stream. Before application of numerical techniques, the governing 
partial differential equations for the stream function and vorticity are reduced 
to ordinary differential equations by an adaptation of methods normally used to 
solve Oseen’s linearized equations. The complete range of the Reynolds number 
R is considered, from indefinitely small to indefinitely large. All the results 
are intended to represent solutions of the full Navier-Stokes equations of motion, 
although in practice approximations are inevitable. These are mainly brought 
about by the necessity of limiting the size of the calculations. 

At the lower end of the Reynolds-number range, the calculated frictional drag 
coefficient agrees well with the results of Tomotika & Aoi (1953) based on Oseen’s 
equations. At intermediate and higher Reynolds numbers there is good agreement 
with the experimental results of Janour (1951) and with the improvement of the 
Blasius solution given by Kuo (1953). Finally a limiting solution is obtained as 
R -+a. This shows that the drag coefficient is proportional to R-4, in accordance 
with boundary-layer theory. The actual calculated value of the coefficient is 
about 4 % higher than the Blasius value. 

Although the present results tend generally to confirm the trend of the recently 
published results at R = 0.1, 1 and 10 of Janssen (1957), there are substantial 
discrepancies in the detailed results in a number of instances. In  particular? the 
drag values obtained at R = 1 and 10 are some 20 % higher than Janssen’s 
although there is reasonable agreement at R = 0-1. It seems possible that 
Janssen’s analogue is a little crude a t  the higher Reynolds numbers. 

1. Introduction and basic equations 
The Navier-Stokes equations describing the steady motion of a viscous, incom- 

pressible, fluid are, in terms of the pressure p ,  the density p and the velocity 
vector q, 

where v is the coefficient of kinematical viscosity. The equation of continuity is 

(1)  (q .V)q  = -p-lgradp+vV2q, 

divq = 0, (2) 
Fluid Mech. 24 37 
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and if the motion is two-dimensional with Cartesian velocity components (u, w), 
equation (2) may be satisfied by introducing a stream function I&$, y) such that 

u = a@lay, v = -a+px. (3) 

By eliminating the pressure from ( l ) ,  we obtain the single equation 

(5) 

v:$+g= 0. (6) 

for the scalar vorticity 

where V2, = a2/ax2+ a2/ay2. Moreover, equations (3) and (5) together give 

5 = avpx - aulay, 

Equations (4) and (6) are the simultaneous equations which are usually solved 
numerically when the steady motion past an obstacle in a uniform stream is 
required. If the stream has velocity components ( U ,  0) the boundary conditions 
are 

at large distances from the obstacle, together with the no-slip condition q = 0 
on the body itself. Numerical solutions have so far been mainly confined to 
motion past circular cylinders, e.g. Thom (1933), Kawaguti (1953), Allen & 
Southwell (1955) and Apelt (1961). For a flat plate of finite breadth a t  zero 
incidence to the stream, a few results, at Reynolds numbers 0.1, 1 and 10, have 
been given by Janssen (1957) using an electrical analogue of the numerical 
problem. 

The flat plate is a suitable problem in which to investigate the complete 
Reynolds number range numerically, since limiting solutions are known both 
for low and high Reynolds numbers. On the one hand there is the linearized 
theory of Oseen. Tomotika & Aoi (1953) have given a reliable solution of Oseen’s 
equations in this case. At the other end of the scale there is the Blasius theory, 
although strictly this applies to a plate of infinite breadth, Kuo (1953) has 
modified the Blasius formula for the resistance to apply to a finite plate at  
moderate Reynolds numbers. No independent check on this result has yet been 
given. 

In the intermediate range between the extremes of very low and moderately 
high Reynolds numbers the only theoretical results available are Janssen’s. His 
results for the drag coefficient seem to be rather low compared with, on the one 
hand, Tomotika & Aoi’s solution at R = 1 and on the other, the experimental 
results in the neighbourhood of R = 10 due to Janour (1951). Janour’s measure- 
ments extend over the range R = 12 to 2335. At the lower end they are therefore 
largely unconfirmed by theory. At the upper end they clearly approach the value 
predicted by the Blasius theory. Although Janssen suggests that his own results 
confirm the trend towards the Blasius solution as R is increased, this is perhaps 
a little optimistic at so low a Reynolds number as 10 and there is hardly any 
tendency to agree with KUO’S modification a t  this value of R. There is clearly 
scope for further investigation of the theoretical problem at all Reynolds 

a$-jay .+ u, agpx + 0, (7 )  
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numbers. Such an investigation is presented in this paper. Numerical solutions 
of equations (4) and (6) are obtained by applying a technique which is similar to 
the method of separation of variables, and which is suggested by the analytical 
treatment of Oseen's linearized equations. As in the case of Oseen's equations, 
a prior step in the analysis is the transformation of the co-ordinate system to one 
suitable to the obstacle concerned. 

For a flat plate of length 2c situated along the x-axis with edges at x = f c, the 
transformation is 

The upper half of the (x, y)-plane, which by symmetry is all that need be con- 
sidered, is transformed to the semi-infinite strip > 0,  0 < 7 6 n. The plate 
transforms to g = 0, with trailing edge at  7 = 0 and leading edge at  7 = n. The 
transformation of derivatives is 

(8) x = ccoshgcosq, y = csinhgsinv. 

I (9) 
8/86 = c(sinh 5 cos 7 8/ax + cosh < sin 7 slay), 

8/aq = c( - cosh 6 sin 7 alax + sinh g cos 7 a/ay). 

Transforming equations (4) and (6) and introducing the dimensionless stream 
function and vorticity and the Reynolds number defined by the equations 

$ = UC$', < = Ug'lc, R = ~ U C / V ,  (10) 

we obtain, after suppressing primes, the equations 

Boundary conditions are readily deduced from (9). Since u = v = 0 on the plate 

$ = a$/a.g = 0, when g = 0. (13a) 

At large distances, from (7) ,  

Finally by symmetry $ = g = 0,  when 7 = 0 , ~ .  (13c) 

In  these relations, and subsequently throughout the paper, + and are dimen- 
sionless; other quantities will be supposed dimensional. For convenience we shall 
write 82/a$2+ az\87z = V2, although this is not the true Laplacian in the (&T)- 
plane. 

2. Flow at large distances and method of analysis 
A method of analysis is suggested by the Oseen linearized treatment of the 

problem. The following is true for any body symmetrical about the x-axis, since 
for the moment only the flow outside a large elliptic contour 6 = 6,, is considered 
independently of the inner boundary conditions (13a). From (13 b ) ,  as 6 -+ co 

a$.lag get sin 7, a$p7 - $et cos 7, 
37-2 
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and the Oseen linearized form of (1 1) is 

S. C. R. Dennis and J .  Dunwoody 

V2(; = IR  et(cos 17 aC/aE - sin 17 ac/:laq). 

Substituting 6 = # eF(& 7) 

with F(E, 7) = &R e5 cos 7, 

(Vz - J-RZ $5) $ = 0. then # must satisfy 6 4  

Fundamental solutions of (17) are 

Kn(P)sinny, K ( P )  ~osng ,  In(P) sinmy, In(p) C O S ~ V ,  

with P(E) = w e 5  

where I, and K ,  are modified Bessel functions of the first and second kinds 
respectively. By virtue of the properties of these functions for large p, only the 
first two solutions are admissible if 5 is to remain finite as + co and of these only 
the first satisfies (13c). Summing over integer values of n, a complete solution in 
the range 7 = 0 to 7 = n is given by 

with 

where the A ,  are arbitrary constants. 

satisfying (13c), may be taken as 
A similar form of solution of (12), complete in the range 17 = 0 to 7 = rr and 

We then have 

i.e. apart from a factor, f,(E) is the Fourier sine transform of $. Integrating twice 
by parts with regard to 17 and using the conditions $(E,  0) = $(E ,  n) = 0, we find 
that the transform of (12) is 

fl-n"f,+rn(() = 0 (n= 1,2 ,3 ,  ...), (21) 

and primes denote differentiation with regard to 6. Substituting in this integral 
for 5 using (15) and in turn for $ from (18) and letting 
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Boundary conditions for the f, as [+ 03 follow from (13b). Substituting for @ 
from (20), necessary and sufficient conditions for satisfaction of (13b) are 

e-%(&-) -+ 4, e-F.f,([) + 0 (n+ 1). (25) 

The present object is to deduce a form of the solutions for thefn(C) as 5 -+ 00, 

but it may be observed that (21) and (24) are valid for all 6 provided F([ ,  7) and 
the functions g,([)  are suitably chosen to ensure the satisfaction of the full 
equation (1  1)  rather than the linearized form, a step shortly to be considered. 

A first integral of (21) is 

f + nf, + C, en5 = en[ e-nlr,(t) dt,  La 
provided the integral on the right-hand side exists. This may be seen by con- 
sidering the form of r,([) as [ + co. With F(<, ?) given by (16), equation (23) 
defines exactly the modified Bessel function of the first kind with argument p, viz. 

J%(O LW), 
and the functions g,(C) are given, for large enough 6, by (19). Using the asymptotic 
expansions of the modified Bessel functions for large p it may readily be shown 
from (24) that, as [ + 00, 

where Cis constant, assuming the series to converge. Subject to this assumption, 
the integral in (26) exists and if we divide each side of (26) by e~ and let 6 -+ 00, 

we find using (25) that 

Cl = -1, C, = 0 (n=2,3 ,4 ,  ...). (27) 

It then follows that, as [ -+ co, 

f1(8 N &' + C ,  f n ( 8  + C/n (n+ 1). 

Substituting in (20) and summing the series, it  is found that except a t  7 = 0, a t  
which a finite discontinuity exists, 

where K = 4nC. 
This result for the limiting form of @ is in accordance with the general result of 

Imai (1951) obtained by different methods. The boundary conditions assumed by 
Janssen in his treatment of the flat-plate problem do not accord with this. He 
combines (13b) in the form 

@(5,7) N +et sin + K( 1 - y/n), (28) 

@ = sinh[, sinq, [ = cm, 
and enforces this exactly at a chosen [a which, in practice is, of course, finite. 
Allen & Southwell, in dealing with the flow past a circular cylinder, state the 
condition for the (dimensional) stream function as @ + U y  at large distances. 
Kawaguti, however, uses the relationship that, as r -+ 03, 

$(r,  8)  N T sin 8 - +C,( 1 - 8/n),  (29) 

where (r ,  8) are polar co-ordinates and CD is the drag coefficient. This is in effect 
equivalent to (28), as may be shown by calculating a value for K .  
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If D is the drag on the body, i.e. the force in the direction of the undisturbed 
stream, and D, is the force in the same direction exerted by the fluid outside a 
closed contour C' surrounding the body on the fluid inside it, the momentum 
equation in this direction for the enclosed fluid is 

In  customary notation for the stress components in the fluid 

where (I, m) are the direction cosines of the outward-drawn normal to C', s is arc 
length measured in the anti-clockwise sense and ,LL is the viscosity. In  particular if 
C' coincides with the contour C" of the body itself then 

The two parts of this integral, depending respectively on the pressure and the 
viscosity, give the pressure drag and frictional drag. 

The total outflow across the contour C' must be zero. Goldstein (1929) has 
shown that for a large contour (or closed surface surrounding the body in the case 
of a closed body) equation (30) reduces to 

D = p U I ,  

where I is the outflow over the large contour, balanced by an equal inflow along 
the wake. At large distances downstream it follows from Oseen theory (viz. by 
considering the form of 5 given by (15) for large 6 )  that the wake coincides with 

in terms of the dimensionless $. Substituting from (28)  

I = -2KUc,  

K = -D/2pU2c = - C D ,  i.e. 

where C, is the drag coefficient. The difference in the factor in Kawaguti's result 
(29)  is due to the slight difference in definition of C, for a circular cylinder. The 
one used here is customary for a flat plate. 

It follows from these results that if the many-valued function of q is not present 
in (28) ,  integration round a large contour must yield zero drag. This must be 
true of Janssen's contour 6 = tm, although what influence this may have on the 
numerical solution is not easy to see. 

It now remains to modify the definitions of the functions P(6, q) and gn(6) so 
that the full equation (1 1) shall be satisfied throughout the complete range 6 = 0 
to 5 = 00, at the same time preserving the details of the Oseen solution for large 6. 
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Essentially, this requires that the substitution (15) for [ shall be made in (11) 
rather than (14). As already noted, the set of equations (21) can then be made to 
represent (12) over the complete range of $. Boundary conditions for fn(t) at 
$ = 0 are deduced from (13a). They are that 

fn(0) =fA(O) = 0 (n= 1 , 2 , 3 ,  ...). (32) 

The function P([,y)  is chosen largely for convenience, but subject to the 
important restriction that it should reduce to (16) for Iarge 6. This ensures that 
g n ( [ )  reduce to (19) and the behaviour of the functions for large 6 is known. 
A particularly convenient definition of F($,r )  is to make it a solution of 

as required. Furthermore, if with this choice of F we substitute (15) into (1  l),  the 

with 

(34) 

(35) 

It will subsequently appear that the important point about (34) is that there 
is no term in a$/at .  

Supposing for the moment that P and Q are specified functions of [ and 7, 
equation (34) is linear in 4. We cannot separate the variables as in (17) but in 
effect g,(k), equation (18), is the Fourier sine transform of $([,7), viz. 

Integrating twice by parts with regard to 7 and using the conditions 

4($, 0)  = $(t,n) = 0, 

we see that the transform of (34) is 

$n(g;-n2gn)+S" 0 ( P % + ~ + ) s i n a p d q  = 0, (37) 

holding for n = 1,2 ,3 ,  . . . , where again primes denote differentiation with regard 
to t. In  order to proceed further, series must be obtained for P and Q in terms of 
the functions fn($) and their derived functions and substituted in the integral in 
(37), which is then evaluated using term-by-term integration. The set of equa- 
tions (37) is then reduced to the form 

m 

g:-n2gn+ C k n , p g p  = 0, (38) 
p=l 

where the k's are functions of to be determined. Since a$la$is absent from (37) 
there are no terms involving qA(6) in (38), which makes them especially suitable 
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for solution by numerical methods. Further, their solutions must approach (19) 
as 5 3 00, provided the outer boundary condition for II. is satisfied properly. 

Conditionsfor thevalidity of term-by-term differentiation of the Fourier series, 
together with the method of obtaining derived series, are given by Jeffreys & 
Jeffreys (1963). It follows from these that 

A series for F(5, y) may now be obtained by substituting this result into (33) and 
integrating term by term with regard to f .  This may be taken as 

with 

i.e. we choose that particular solution of (33) that satisfies the condition 

Further derived series necessary for the term-by-term evaluation of the 
integral in (37) can now be obtained. It is hardly necessary to give them in deta.il 
or describe any of the further steps in the process. It may be verified that a 
formula for the coefficients kn, p(LJ can conveniently be given in terms of four sets 
of coefficients defined respectively by 

F(0,T)  = 0. 

The formula is 
m 

r=l 
kn ,p ( f )  = $ R { ( ~ - ? ~ ) c n + p +  ( n + ~ ) ~ n - p > - i $ ~ - R ~  C. ( J f r + N r ) ,  

Nr = dr(dp+r-n + dn+r--p - dn+p--r - dn+p+r) 

N, = ar(bp+r-n + bn+r-p + bn+p-r - bn+p+r)* 

(43) 

144) 

(45) 

where 

and 

Since some of the coefficients in these expressions occur with negative or zero 
suffixes, the definitions (42) are extended to take account of this according to 
the rules b-, = -bn, c-, = -cn, d-, = -an, (n = 1 , 2 , 3 ,  ...), 

with b, = c0 = do = 0. 

Boundary conditions for the equations (38) must now be stated. These may be 
considered in the following way. If the equation (17) were valid from 6 = 0 to 
< = 00, the solution for the functions gn([) would be the Oseen solution given by 
(19). Here each function has an associated arbitrary constant. This expresses 
the fact that the functions gn( f )  are independent solutions of the equations 

(46) g” - (n2 + &R2 e25) gn = 0, n 
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which is the special form that (38) would take in this case. A condition to deter- 
mine these constants would then be found by putting = 0 in (26). Using (27) 
and (32) this gives 

e-%r,(f) df = - 1 (n = 1) \. 
= 0 (n=2,3 ,...).J 

l o m  (47) 

These conditions may be recognized as equivalent to the conditions which are 
used to find a similar set of constants in the various applications of Oseen 
linearized theory, cf. Tomotika & Aoi (1950, 1953), although the process is not 
exactly the same. 

In the present case the governing equation is (34) and the functions g,(() 
satisfy the generalized set of equations (38). However, in the following section 
a set of independent numerical solutions, each with an associated arbitrary 
constant, will be considered. These are obtained by treating (38), at a given stage 
of an iterative numerical process, as a set of linear equations for the functions 
gn(<) with numerical coefficients k,,#J. With this extension of the meaning 
of the functions g,(f), the same condition (47) is valid to determine these 
constants. 

Next, the condition as ( -+ GO must be considered. In the Oseen case there is no 
problem, since the functions (19) automatically satisfy the correct condition that 
the scalar vorticity 6 tends to zero for large f .  In  the present case, provided the 
condition (47) and the initial conditions (32) have been satisfied, the functions 
f , ( f )  which satisfy (21) automatically tend to the form consistent with (28) and, 
consequently, the equations (38) approach a form similar to (46). This shows 
itself in that k, , , ( f )  N - (&R2) e25, while for n =+ p ,  k,,p(c)/kn,n(c) +- 0, i.e. the 
diagonal terms of the matrix of coefficients IC , ,~ ( ( )  dominate (38) for large e. In  
the method of numerical solution the problem of the condition for the gn(<)  as 
5 -+ GO is therefore solved in the following way. For large enough (, equations 
(38) may adequately be approximated by 

with 

However, x itself becomes very large if f is large, and this makes the numerical 
finite-difference approximations which are used inaccurate, so a further approxi- 
mation to (48) is made by employing the method of Jeffreys & Jeffreys (1962) to 
obtain the approximate solution 

where & is a sufficiently large value of 6. This is used for the solution for f > g1 
and the arbitrary constants D, are chosen to satisfy conditions imposed at f = f1 in 
a manner which will be described. By virtue of the form assumed by kn,,(g) for 
large c, it is known that (49) approximates more accurately to (48) as c increases. 

Once numerical solutions have been obtained, the drag on the plate may be 
found by evaluating (31) round the plate itself. The pressure drag is zero in this 
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case and the drag coefficient becomes 
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the subscript referring to 6 = 0. Substituting in the integral using (15) and (18) 
and noting that P(0 ,y)  = 0, we find 

c, = - (n/R)g,fO). (50)  

The local shearing stress at the plate is p,, = p(au/ay),,. Defining the local 
coefficient of skin friction cf to be the dimensionless shearing stressp,,/pU2, then 

cf = - 2$jR. (51) 

3. Method of numerical solution 
The numerical process consists of an iterative cycle of three stages which, 

starting from an initial assumption, is repeated successively until convergence is 
obtained . 

In  the first stage, assuming the r,(c) are known, equations (21) are solved 
subject to (32) by step-by-step integration. From the computed solutions for the 
f,(C), the coefficients km, &) are calculated, using numerical differentiation and 
integration to obtainfA([) and p,(t). The second stage of the process now consists 
of finding numerical solutions of (38) which satisfy the conditions (47). To do this 
an infinite set of constants may be introduced by putting 

m 

in (38). Then the aggregate solution 

{gjLp)(S)) (n= 1,2 ,3 ,  ...I (53) 

satisfies (38) and represents, for fixed p ,  one of a set of linearly independent 
solutions obtained by assigning the values p = 1,2 ,3 ,  . . . . The linear independence 
is ensured by assigning independent boundary conditions in each mode of 
solution. 

be the 
sufficientIy large value of 6 referred to in the last section. For > c1 each g$?) is 
given by (49) with the constants D,  chosen to make them satisfy suitable imposed 
conditions a t  [ = [,, e.g. for fixed p ,  

To consider in detail how a typical solution is obtained, let 6 = 

gF)(gl) = 1, g$y)((J = - 1 ( n + p ;  n= 1,2 ,3 ,  ...). (54) 

These are the independent boundary conditions referred to above; they are 
distinct a sp  varies and therefore define a distinct numerical mode of solution for 
each value of p ,  valid for 6 2 5,. 

Each of these modes of solution is now completed by solving equations (38) 
for 6 < 6, by step-by-step integration, working backwards from C = to ( = 0, 
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making the inner functions and their first derivatives continuous with the outer 
solution at 5 = 6,. Denoting a typical equation of the set by 

g" + K ( t )  = 0, 

g ( t  - 2h) + g(< + 2h) - 2 g ( t )  + +h2{K(t - h) + K ( t )  + K ( t  + h)} = 0, 

a suitable difference formula, using a step h, is 

for it allows all equations of the set to be integrated simultaneously, starting the 
integration by calculating g(5, - h)  from appropriate values a t  t,, El + h, 6, + 2h 
and 6, + 3h. The truncation error in the formula is O(h6). 

From the computed sets of fundamental solutions (53), the third and final 
stage of the iteration is to determine the constants B,. Substituting from (52) 
into ( 2 4 )  and thence into (47 ) ,  the B, must satisfy the infinite set of linear 

equations m 

c %L,pBp = - 1 (n = 1 )  1. (554 
p-1 

= o  ( n = 2 , 3 , 4  ,... ) , I  (55 b )  

where Q~ = Sm ~ ~ , ~ e - n ~ d < ,  (56)  
2 0  

y n ,  p = C dp){&--p .  - 4 + r )  '0s' '$7 i H 4 - r - 2  + 4 - r + z  - 4 + r - 2  - &+r+d}. 

with 
OD 

(57) 
r= l  

Values of the integral Yn(Q are obtained using numerical integration, and 
further numerical integration determines Qn, p .  

Equations (55b)  are homogeneous in the constants B, and serve to determine 

(58)  
the ratios 

BJB, = BA ( n = 2 , 3 , 4 ,  ...). 

Having found them, we may determine B, from (55a), although in practice a 
slight modification of this last step is made. Using the values of B, (n =# 1 )  we can 

with 

The constant B, is now found by substituting (59) into (24 )  with n = 1 and then 
substituting r l ( [ )  into the first of (47) .  It should be noted that the final solution 
{G,(t)) can be made arbitrary to the extent of any single scalingfactor, this merely 
altering the definition of B,. It is convenient to choose this factor so that 
G,(O) = 1;  the drag coefficient then becomes C, = -rB,/R. 

The functions r,(t)  are now computed by substituting from (59) into (24) .  In  
practice the functions R,([) defined by 

Tn(k) = - B , U t )  (n= 1 , 2 , 3 ,  ...I (60) 

are recorded. At this stage a cycle of the iterative process is complete and the 
next cycIe is entered by re-computing the functions fn. 
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In  practice the upper limit in the integral (56) is replaced by a finite number 
f ;  = 6, beyond which the integrand is negligible. During the course of calculations 
it soon becomes apparent that 6 decreases as the Reynolds number R increases. 
This introduces the notion of a boundary-layer thickness into the calculations and 
it can, in fact, be shown that for large enough R, 6 cx R-4. Briefly,t this may be 
done by introducing the changes of variable 6 = 62, f, = B, PEln in the equations 
(21) and (38), when they become respectively 

d21?Jdz2 - a2n2F, = Rn(6z), (61) 

If it  is assumed that 6 -+ 0 as R + co and, further, that the right-hand side of (61) 
becomes a function of z alone, solutions of (61) may be found which become 
functions of z alone as R -+ 03. Substituting these functions and their derived 
functions into (44) and (45) and considering the form they take, it  is fairly easy to 
deduce that for large enough R 

S2kn,p N RB,S3&,p(z) +R2B2,S6pn,p(z), 

and this can be made a function of z alone, Kn,p(z), by choosing 

RB, a3 = c', (63) 

where cf is a definite numerical constant. Solutions of (62) can now be found which 
are functions of z alone, the term in n2 in (62) tending to zero with 6. 

Finally, it  may then be deduced that the functions Yn,p are of order unity and, 
replacing the upper limit in (56) by 6 and changing to the variable z, @ n , p  is of 
order 6. Thus from (55) the constants B, are of order 6-1 and, in particular, 

B, = a&-l, (64) 

where a is a constant. Combining this with (63) shows that 6 = O(R-4). Since 
'Pn,p is of order unity the functions R, are functions of z alone, and this completes 
the process. 

A solution of the limiting form of (61) and (62), i.e. with the terms in n2 sup- 
pressed, has been obtained. Here the functions K,,.(z) are calculated from the 
same formula (43) but with the definitions (42) modified. The modifications are 
that p, now defines a function of z by the same formula (41), that f; stands for 
differentiation with regard to z, that the terms involving Pn in the definitions of 
b, and cn are suppressed and finally, that R be replaced by the numerical constant 
cf defined by (63). The constant cf can be chosen at  will; this merely alters the 
boundary-layer thickness in the co-ordinate x .  Finally, it follows from (63) and 
(64) that B, = u(a/c')*R* and hence C, = -na(a/c')* R-*. 

4. Calculated results 
The results given in the present section were computed on a Ferranti Mercury 

Computer using the numerical methods previously described. In  practical 
calculations, the series (18) and (20) have to be truncated, i.e. only a finite number 

t This is considered in more detail by Dennis & Dunwoody (1964). 
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off&) and g&) may be considered. In  the present case limitations were imposed 
by the available computer storage space. The storage problem is not serious for 
the fn([), but if the calculations extend to m terms of the g,([) one has currently 
to store m2 component numerical solutions [viz. each g$)(t) for n,p = 1,2,  ..., m] 
together with m2 functions km,#J. In  fact the calculations had to be limited to 
m = 5 ;  the effect on the results of this truncation is discussed in the final section. 

- 1  + 2  

, Dennis FIUURE 1. Comparison of drag coefficients for the range R = 0.1 to R = 100. - 
& Dunwoody; ---- , Oseen theory (Tomotike & Aoi); 0 ,  Janssen; 0 ,  experimental 
(Janour) . 

R C D  R CIJ 
10 0.748 500 0.0731 
15 0.581 1000 0.0502 
20 0.483 2000 0.0341 
40 0.316 5000 0.0206 

100 0.188 10000 0.0141 

TABLE 1. Frictional drag coefficient 

The iterative process for obtaining numerical solutions was always started by 
assuming 

in ( 2 1). The initial assumption for the fn( 5) is therefore 

TI ( [ )  = - 1 ,  ~ ~ ( 5 )  = 0 (n=2,3 ,4 ,  ...) 

fA5) = coshE- 1, fn(t) = 0 (n* 1). 

This satisfies the inner boundary conditions for $ and also (to some extent) the 
outer conditions since, as 5 --f 00, it  leads to $(c,y) H $ersinr]. On the whole, 
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even at higher Reynolds numbers, less than ten iterations were needed to achieve 
convergence to the final solution. 

Calculated values of the frictional drag coefficient CD over a wide range of 
Reynolds numbers are given in table 1. In  figure 1 the results for the range 
R = 0.1 to 100 are compared with Oseen theory a t  the lower end, and with 
Janour’s experimental results for R > 12. The approach to Oseen theory for 
very low values of R may be noticed, and a more precise numerical comparison is 
given in table 2. The Oseen values have been calculated from the formula 

given by Tomotika & Aoi. Here 

8 = 1-y-l0g(R/16), 

where y is Euler’s constant. The difference ranges from 4% at R = 0-1 to 14 % at 
R = 4, increasing in a fairly uniform way. 

R 

0.1 
0.2 
0.4 
0.6 
1.0 
2.0 
4.0 

Calculated 

22.66 
12.80 
7.33 
5-34 
3.64 
2.20 
1.36 

Oseen 

22-85 
13.06 
7.61 
5.61 
3.87 
2.39 
1.55 

TABLE 2. Comparison of CD for low R 

Janssen 

22.23 
- 

By contrast, the comparison of present results with Janssen’s, obtained by 
electrical analogue methods, is less uniform. His values at R = 1 and at R = 10 
(C,= 0.570) seem low (cf. the experimental trend at R = 10). It is possible that 
the length between lattice points ( = in) used by Janssen is too high a t  the higher 
values of R. It was found necessary in the present method to use the respective 
steps h = 0-15,O-1 and 0.05 in at the three values R = 0.1, 1 and 10. Moreover, 
as previously noted, Janssen’s satisfaction of the outer boundary conditions does 
not appear to be correct. 

Figure 2 shows a comparison of calculated values of CD for R > 100 with 
Janour’s experimental results. The theoretical result 

1.328 4-12 
+R CD M __ 

given by Kuo is also shown. 
Van Dyke (1962) suggests that the coefficient 4.12 in this result should be 

approximately 5-3; on this basis the agreement with present results would be 
better, e.g. at R = 100, Kuo’s result gives CD = 0.174, while the corrected resuit 
gives C, = 0.186, compared with the present value of O.lS8.t 

t This was pointed out by a referee. 
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A result for large R based on the method indicated in the last section has been 
obtained. Taking c' = - 42-93 (note that Bl in (63) is negative) a value a = - 2.031 
resulted, leading to 

6 = 4.60R-4, Bl = - 0.422R4, CD = 1.389R-3. 

The limiting value of the frictional drag coefficient is therefore a little higher than 
the value obtained from the Blasius theory. 

-2 
+ 2  3 

log,, R 
FIGURE 2. Comparison of drag coefficients for the range R = 100 to R = 10,000. -, 

Dennis & Dunwoody ; - - - -, Kuo (theoretical) ; , experimental (Janour). 

The local variation of skin friction over the plate is obtained from equation (51). 
The best way to obtain f; is to compare the governing equation (12) with its 
transformed analogue (21), whence it follows that 

Putting 5 = 0 gives Q. The theoretical form of the variation of skin friction near 
the edges of the plate can be found from (65). Near the leading edge (c  = 0 , ~  = n) 
we may put 7 = 71 - 7' in (65)  and expand in powers of q', which gives 

CO(7') = Ah'+ O(7'L 
00 

where A = 2 ( -  1)fi+1nra(O). 
n= 1 

On the plate we also have 
x = c( 1 - cos 7') N &q" 
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for small q', where X is measured along the plate from the leading edge. Hence, 
near X = 0 

S.  C .  R.  Dennis and J .  Dunwoody 

C f E j j  x . (66) 

cf M A'(v /UX): ,  (67) 

A (")" 
In particular as R 3 co, A = O(R4) from the results of the previous section and 

this result becomes 

where A' ( = AR-4) is a numerical constant. This is in agreement with the Blasius 
theory. A similar result holds near the trailing edge. Here we have only to replace 
X by 2c-X and A by the quantity 

B = C. nrn(0) 
00 

n = l  

in (66). As R -+ co, the corresponding form of (67) is then 

cf M B'(vlU(2c- X ) ) s ,  
where B = B'RB. 

I I I 

0 0.25 0.5 0.75 1.0 
x / 2 c  

Cf = 0.332(V/UX)4. 
FIGURE 3. Local distribution of skin friction over the plate. The Blasius curve is 

The constants A and B cannot be found with any great accuracy from the 
present solution because of the limited number of terms computed and the rather 
severe requirement of calculating the summations involving the terms nrn( 0) .  
Qualitatively, however, the behaviour of A' and B' with increasing R is quite 
striking, viz. B' decreases and is < A' for large R. Except very near the end- 
points, the distribution of skin friction over the plake can be found with reasonable 
accuracy from the series (65). Some results are given in figure 3. The approach to 
the Blasius solution as R becomes large is clearly seen, particularly the diminishing 
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effect of the trailing edge singularity. This latter tendency has already been 
noted by Janssen over the range R = 0.1 to 10. 

The variation of boundary-layer thickness near the leading edge of the plate 
is also in agreement with the Blasius theory. In  general the thickness [ = 6 
corresponds to a thickness y = 6’ - c8sin q’. Using the results of the calculations 
for large R we have, near the leading edge, 

6’ % C~(ZX/C)$ = 4.6O(vX/U)$. 

It may be noted that the present manner of choosing the thickness 6, especially 
suitable in the present approach, gives an estimate of 6‘ within the numerical 
range of the more conventional estimates (cf. in particular the numerical 
coefficient 5.0 given by Schlichting 1960). 

+ 

5 
Q -k4 

=: 
8 

Fq 
I 

x / 2 c  

FIGURE 4. Pressure distribution over the plate. 

The pressure field may be obtained by integrating the equations of motion in 
the (<, v)-plane. First, the pressure gradient in the [-direction is integrated along 
the path q = +n from = 0 to [ = a. This gives the pressure po  a t  the centre of 
the plate, and the pressure at any point [ = 0 , ~  = ql on the plate is then obtained 
by integrating the pressure gradient in the ydirection along 5 = 0, which yields 

Some practical difficulties were encounteredin calculating the pressure distribu- 
tion on the plate. The reason is that whereas the series on the right-hand side 

38 Fluid Mech. 24 
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of (65) converges well enough to obtain reasonable values of 5, the series obtained 
by differentiation with regard to f is less satisfactory. In  the end it was found 
necessary to make use of finite-difference equations (in both the [and 7 directions) 
on and near the plate in order to  obtain smooth values of (ac/a[),,. Some calcu- 
lated pressure distributions over the plate are shown in figure 4. Although we do 
not claim high accuracy for these, the results indicate clearly the tendency of 
pressure gradients to become zero (except at  the edges of the plate) as R increases. 
This agrees with Blasius theory. 

5. Discussion 
The mathematical assumptions in the present paper are not greatly dissimilar 

from those made in the standard theoretical treatment of Oseen’s linearized 
equations. The essentially new point is the satisfaction of the full governing 
equation (1 1) for the scalar vorticity 5 by means of equations (15) and (1  8); and 
also the fact that all solutions of the relevant equations are carried out numeri- 
cally. In  this connexion it has to be assumed that some theoretical meaning can 
be attached to the system of differential equations (38) and their numerical 
solutions. This assumption seems reasonable, especially in view of the fact that 
the computed solutions give results which are consistent with Oseen theory as 
R + 0 and with the Blasius theory as R -+ CO. 

The edges of the plate are clearly points of non-uniformity of convergence of 
the series (18). The convergence of this series does not, however, have any real 
bearing on the numerical process of solution. It is the fundamental solutions of 
(38) [viz. the g‘np)(()] which are actually computed and these are subsequently 
combined in the form (18) by the satisfaction of the integral condition (47). In  
effect this is a condition on the yn(() ,  not the gn( [ ) .  Thus the important properties 
of the function 1; (e.g. the leading and trailing edge singularities) are deduced from 
(65) ; and the series (1 8) plays no real part in the solution. In  this sense the method 
of analysis is very similar to the method of separation of variables. 

The numerical model used in the present paper is, of course, a restricted one. 
However, although the basic calculations were restricted to only five terms in the 
series (18) it is not difficult, once this basic solution is computed, to obtain 
estimates of further terms in (18) using a more simplified calculation process 
requiring little extra computer storage space. Such estimates indicate that the 
results presented here are reasonably accurate. In  particular, the average skin 
friction on the plate depends only on the constant B, and this does not seem to be 
very sensitive to the number of terms taken into account in the series (18). The 
principal source of error in the present method arises, in fact, from the difficulty of 
making the join of the inner (finite-difference) solution with the outer solution of 
equations (38) a t  a large enough value of E l ,  since the inner solutions lose accuracy 
if is too large. 

The only serious disagreement with previous results is the discrepancy with 
Janssen’s drag values at  R = 1 and 10. As a check on our own calculations, 
solutions at R = 20 and 40 are at  present being computed using two-dimensional 
relaxation methods. 
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An account of some of the results of the present paper forms part of a Ph.D. 
thesis submitted by one of us (J. D.) to Queen’s University, Belfast. The range of 
Reynolds numbers has been extended in the present paper and some of the 
previous results have been recalculated using improved numerical methods (viz. 
smaller integration steps, allowing a better join of inner and outer solutions at  
< = <I). 

Some of the work described above has been carried out as part of the research 
programme of the National Physical Laboratory, and is published by permission 
of the Director of the Laboratory. 
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